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Abstract. We attempt to give an elementary introduction to the Heegaard Floer homology, an important
collection of invariants in low-dimensional topology. The main focus is to develop rigorously the theory
of Heegaard splittings, and we later shift to a more intuitive approach in order to explain the more
advanced topics required to define ĤF .

1. Introduction

Our final goal is to define the Heegaard Floer homology starting from Heegaard splittings, to which we
devote a substantial amount of attention. The structure of our topics is inspired by [1] and [6]. Getting
the Heegaard Floer homology of a 3-manifold Y from scratch is a complicated process, which we can
briefly summarize it as follows:

Y ⇝ (Σg, α, β, z)⇝ (ĈF (H), ∂)⇝ ĤF (Y )(1.1)

Let us explain what each of these steps is. First, we must associate a Heegaard diagram (Σg, α, β, z)
to Y . This diagram, which consists on a surface Σg with embedded set of circles α = (α1, . . . , αg) and
β = (β1, . . . , βg) stores all the information of our manifold Y , i.e., we can recover Y from (Σg, α, β, z).
Here, z is just a basepoint required for techincal purposes. This is explained in sections 2 and 3. In
section 2, we develop the theory of Heegaard splittings, a way to partition 3-manifolds into elementary
pieces. Our inspiration for this section is [2]. The main result is the following theorem, which will be key
in showing that ĤF is an invariant:

Theorem 1.1. Any two Heegaard splittings of a closed orientable manifold Y are stably equivalent.

In essence, this means that our invariant does not depend on the Heegaard splitting we choose. In
section 3, we show how to get the Heegaard diagram from the Heegaard splittings. This completes the
step Y ⇝ (Σg, α, β, z). Our next step is to construct a chain complex, a familiar structure from algebraic
topology, from this. This involves some advanced notions. First, we associate a configuration space to the
Heegaard diagram H = (Σg, α, β, z). Namely, we consider Symg(Σg) = Σg × · · · × Σg/Sg, which is the
space of g-tuples of points in Σg in which the order does not matter. Symg(Σg) turns out to be a smooth
manifold. This product of g copies of Σg induces two real tori Tα = α1 × · · · × αg and Tβ = β1 × · · · × βg

embedded in Symg(Σg). This will be discussed in section 4. Now, these tori will play an important
role in constructing the chain complex. Indeed, we define ĈF (H) as the abelian group generated by
the points of the subspace Tα ∩ Tβ . Now, to make ĈF (H) into a chain complex, we must define a map
∂ : ĈF (H) → ĈF (H) with ∂2 = 0. We outline these definitions and construct ∂ in section 5. This shows
the step (Σg, α, β, z)⇝ (ĈF (H), ∂). Finally, after having defined all the required structures, we formalize
the last step of equation (1.1) and define ĤF (Y ), one of the variants of the Heegaard Floer homology,
completing the step (ĈF (H), ∂) → ĤF (Y ). This is what we are going to cover.

Now, even though we are not going to cover this, it turns out that there are other versions of the
Heegaard Floer homology, namely HF +, HF −, and HF ∞. There is also a way to relate these invariants
to knots and links, and under certain circumstances we can use the Alexander polynomial of the link
to help us compute the invariant. An example of this is shown in [4]. In general, there are a lot of
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interesting applications of the Heegaard Floer homology, so we can only exhort the reader to explore
them at their own time and interest.

2. Heegaard Splittings

First, let us introduce Heegaard splittings. Intuitively, a Heegard splitting is a way to decompose any
3-manifold into two elementary pieces. We call these pieces handlebodies.

Definition 2.1. A handlebody H is an orientable 3-manifold with boundary obtained from B3 by
attaching g copies of D2 × [−1, 1] to B3. The gluing homeomorphisms match the 2g discs D2 × {±1}
with 2g disjoint discs on ∂B3 so that the resulting manifold is orientable.

One way to visualize a handlebody is as something diffeomorphic to a neighborhood of
∨g

i=1 S1 in
R3, with the ball B3 in the center. If we stretch B3 horizontally, the picture starts to look more like a
neighborhood of #g

i=1S1. That is, like a solid version of the genus g surface Σg.

Example 2.2. The handlebodies H0, H2 and H4 with 0, 2, and 4 handles, respectively.

H0 H2

H4

Now, let us define what is a Heegaard splitting.

Definition 2.3. If Y is a 3-manifold, a Heegaard splitting of Y is a decomposition of the form Y = H∪φH ′,
where H, H ′ are two handlebodies of the same genus, H ∩ H ′ = ∂H = ∂H ′, and φ is a homeomorphism.

In other words, a Heegaard splitting is decomposing a 3-manifold as two handlebodies glued by their
boundary. Even though the definition is simple, it is already hard to visualize, as most 3-manifolds
actually live in R4, just as S1 lives in R2. However, let us try to visualize some examples of Heegaard
splittings. The first example is S3 = B3 ∪φ B3, where φ is just the identity for the boundaries of the two
balls. Even though we cannot possibly see this in 3 dimensions, we can get an intuition for it looking at
lower dimensions. Note that S1 = B1 ∪ B1 and S2 = B2 ∪ B2, where the gluing is also the identity for
the boundaries. By the same logic, this holds for S3 = B3 ∪ B3 (and for Sn in general). As you may
have noted, we are slowly dropping the gluing homeomorphism from the notation. Let us describe other
two examples.

Example 2.4. We have S3 = H1 ∪φ H1, where φ glues the meridian curve on the first torus boundary to
the longitude curve on the second torus boundary. However, we also have S1 × S2 = H1 ∪φ′ H1, where φ′

glues the meridian curve on the first torus with the meridian curve on the second torus and the longitude
curve on the first torus with the longitude curve on the second torus.
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S3 = H1 ∪φ H1 S1 × S2 = H1 ∪φ′ H1

Remark 2.5. As we can see from the example, H ∪φ H ′ and H ∪φ′ H ′ can induce different manifolds,
even if we use the same handlebodies H, H ′.

Now, as we have had a bit us trouble trying to visualize simple examples, we may be tempted to believe
that Heegaard splittings are only possible for particular 3-manifolds. However, surprisingly, almost every
3-manifold admits a Heegaard splitting. Furthermore, the proof is beautifully simple.

Theorem 2.6. Every closed orientable manifold Y admits a Heegaard splitting.

Proof of Theorem. As Y is a closed manifold, it admits a triangulation. As it is a 3-manifold, its
triangulation will actually consists of tetrahedra. Now, thicken the vertices of the triangulation into
spheres, the edges into cylinders, and the faces into plates. Note that the interior of the tetrahedra
and the plates form a handlebody, and the balls and cylinders form a handlebody of the same genus.
Furthermore, Y is closed, so it does not have a boundary. That is, each point in the surface of each
tetrahedrum touches another tetrahedrum, so the boundaries of our newly generated handlebodies touch
each other everywhere. Hence, these handlebodies of the same genus are glued around their boundaries,
so this is a valid Heegaard splitting for Y , as desired. □

Let us call a Heegaard splitting obtained from a triangulation as in the proof above a Heegaard splitting
associated with a triangulation. This is good, as it means that we can always consider a Heegaard splitting.
Now, we may wonder if Heegaard splittings are unique. The answer is no. In fact, given any triangulation
as in the proof of the theorem above, we could make the triangulation finer, and this would yield another
valid Heegaard splitting of distinct genus. However, Heegaard splittings are indeed unique modulo an
operation called stabilization.

Proposition 2.7. Given a Heegaard splitting of genus g, it is possible to obtain a Heegaard splitting of
genus g + 1. We call this operation stabilization.

Proof of Proposition. Consider a Heegaard splitting Y = H ∪ H ′ where H, H ′ have genus g. Now,
add a handle M to H. This new handle and H bound a disc, which we thicken and call N . Now, note
that H ∪ M and H ′ ∪ N are genus g + 1 handlebodies. Furthermore, as M ∪ N ∼= B3, we have that

(H ∪ M) ∪ (H ′ ∪ H) ∼= (H ∪ H ′) ∪ (M ∪ N) ∼= Y ∪ B3 ∼= Y(2.1)



4 LUIS MODES

Thus, we have constructed a Heegaard splitting of genus g + 1. □

Definition 2.8. Two Heegaard splittings are called equivalent if there exists a homeomorphism of M

onto itself taking one splitting into the other, and stably equivalent if they are equivalent after applying
stabilization to each of them a certain number of times.

Finally, let us prove that Heegaard Splittings are indeed unique modulo stabilizations.

Theorem 2.9. Any two Heegaard splittings of a closed orientable manifold M are stably equivalent.

Proof of Theorem. We will divide our proof in two claims.
First, let us prove that any two Heegaard splittings associated to triangulations are stably equivalent.

Consider two triangulations T and T ′. It is known that any two triangulations T and T ′ have a common
subdivision T ′′. Further, we can note that the Heegaard splitting associated to a subdivision can be
obtained from the Heegaard splitting of the original triangulation via stabilization. Thus, the Heegaard
splittings associated to T and T ′ are stably equivalent to the Heegaard splitting associated to T ′′. Thus,
they are stably equivalent, so any two Heegaard splittings associated to a triangulation are stably
equivalent.

Now, let us prove that any triangulation is stably equivalent to a Heegaard splitting associated to a
triangulation. Let Y = H ∪ H ′ be an arbitrary Heegaard splitting for Y . Let us define some terms. If K

is a one-dimensional subcomplex of T , let U(K) denote the space obtained by thickening K. As we saw
earlier, U(K) is a handlebody. Now, let Γ ⊆ H be the wedge of circles

∨g
i=1 S1 to which H deformation

retracts. We claim that there exists a triangulation S of H such that Γ is a subcomplex of H and the
following conditions are satisfied:

• The handlebody U(S(1)) is obtained from Γ by adding handles, where S(1) denotes the 1-skeleton
of S.

• The handlebody U(S(1)) is obtained from U(∂S(1)) by adding handles, where ∂S(1) denotes the
1-skeleton of the restriction of S to ∂H.

Most triangulations S satisfy this condition. For example, regard H as a 2-disk with g holes, and take the
product triangulation. Note that the conditions above are preserved when taking a finer triangulation.
Let Y = H ∪ H ′ be any Heegaard splitting. Choose a triangulation T such that both H and H ′ are
subcomplexes of T . Let S and S′ be the restrictions of T to H and H ′, respectively. Let Γ ⊆ H be as
before. Now, by subdividing T if necessary, assume Γ satisfies both a) and b). Then U(S′(1)) is obtained
from U((∂S′)(1)) by adding a handle. By adding the same handles to U(S(1)), we get U(T (1)). Now, the
handlebody U(S(1)) is obtained by adding handles to U(Γ). We can summarize this as

U(Γ)⇝ U(S(1))⇝ U(T (1)) = H(T )

where H(T ) is a handlebody in the Heegaard splitting of Y = H(T ) ∪ H ′(T ) associated with the
triangulation T and the arrows represent adding 1-handles. Thus, the original Heegaard splitting
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Y = H ∪ H ′ is stably equivalent to the Heegaard splitting of U(T ) and its complementary handle body,
and this is indeed a Heegaard splitting associated to a triangulation.

Finally, consider any two Heegaard splittings τ1 and τ2. By our second claim, τ1 is stably equivalent
to some Heegaard splitting σ1 associated to a triangulation. Similarly, τ2 is stably equivalent to some
Heegaard splitting σ2 associated to a triangulation. Furthermore, as σ1 and σ2 are associated to
triangulations, they are stably equivalent, by our first claim. Hence,

τ1 ∼ σ1 ∼ σ2 ∼ τ2

so any two Heegaard splittings are stably equivalent, as desired. □

3. Heegaard Diagrams

Now, to be able to turn Heegaard splittings into a chain complex, we will need more structure. Our
first step is to add circles to the surface of the handlebodies.

Definition 3.1. A set of attaching circles γ = (γ1, . . . , γg) for a handlebody H is a collection of closed
embedded curves in Σg = ∂H with the following properties:

• The curves γi are disjoint from each other.
• Σg − γ1 − · · · − γg is connected
• The curves γ1, . . . , γg bound disjoint embedded disks in H.

Let’s see some examples of attaching circles.

Example 3.2. Two possible configurations of attaching circles in Σ1.

Now, more precisely, a Heegaard diagram is just a Heegaard splitting after adding attaching circles.

Definition 3.3. Let Y = H ∪ H ′ be a Heegaard splitting. A Heegaard diagram is a triple H = (Σg, α, β),
where , Σg = ∂H and α = (α1, . . . , αg) and β = (β1, . . . , βg) are sets of attaching circles for H and H ′,
respectively.

Example 3.4. Some Heegaard diagrams.

For some technical details, we will also need to consider Heegaard diagrams with a basepoint.



6 LUIS MODES

Definition 3.5. A Heegaard diagram with a basepoint is a quadruple H = (Σg, α, β, z), where (Σg, α, β)
is a Heegaard diagram and z ∈ Σg − α1 − · · · − αg − β1 − · · · − βg.

From now on, we will use Heegaard diagrams and Heegaard diagrams with a basepoint interchangeably
depending on whether we need to consider the basepoint or not.

4. Symmetric Products

Now, have associated Y with a Heegaard diagram. The next step is to associate Y to a configuration
space, which we will later use to construct the chain complex.

Definition 4.1. Let given a space X, we define Symg(X) = X × · · · × X/Sg, where there are g copies of
X and we are quotienting by the action of the symmetric group Sg.

Now, let us consider this in the context in which X is an orientable surface Σg. It turns out that
“by a miracle called the Fundamental Theorem of Algebra,” as said by Ozsváth, Symg(Σg) is a smooth
manifold with a complex structure it inherits from Σg. Now, consider a Heegaard diagram H = (Σg, α, β).
Let us look at the subspaces of Symg(Σg) induced by the circles α and β.

Definition 4.2. Let Tα = α1 ×· · ·×αg ∈ Symg(Σg) and Tβ = β1 ×· · ·×βg ∈ Symg(Σg) be the subspaces
of Symg(Σg) induced by the circles α and β. We call these subspaces real tori.

Note that, as manifolds, Tα and Tβ have half the dimension of Symg(Σg). Indeed, dimTα = dimTβ = g,
while dim Symg(Σg) = 2g. Now, when we have a basepoint z, we consider another subspace of of Symg(Σg).
Let Vz be the subspace of Symg(Σg) induced by the basepoint z consisting of all the g-tuples of points in
Symg(Σg) with z in at least one of their coordinates. A bit informally, we can say that

Vz = {z} × Symg(Σg)(4.1)

Note that Vz has codimension 2. Now, let us focus on the subspace Tα ∩ Tβ . Assuming that the αi and
βi intersect transversally (that is, that they only intersect at points and not in whole segments), then
Tα ∩ Tβ consists of the intersections points. In other words, it has dimension 0.

5. The Floer Chain Complex

Now, we are ready to begin our path towards the chain complex we want to relate to Y . Let F denote
the field of two elements. That is, F := Z/2Z. We begin with some technical definitions.

Definition 5.1. Given a Heegaard diagram H = (Σg, α, β) for a 3-manifold Y , let ĈF (H) denote the
free Abelian group generated over F by the points x ∈ Tα ∩ Tβ .

Definition 5.2. Let x, y ∈ Tα ∩ Tβ and D be the unit disk in C. A Whitney disk from x to y is a
continuous map φ : D → Symg(Σg) with the following conditions:

• φ(−i) = x

• φ(i) = y

• φ(eα) ⊆ Tα

• φ(eβ) ⊆ Tβ
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i

−i

eαeβ

Whitney disk

Now, an embedding of a Whitney disk in Symg(Σg) looks roughly as follows:

Definition 5.3. Let π2(x, y) be the homotopy classes of Whitney disks.

Definition 5.4. Let M(φ) be the moduli space of the holomorphic representatives of φ.

It is known that M(φ) is a smooth manifold.

Definition 5.5. Let µ(φ) be the expected dimension of φ.

Definition 5.6. Let nz(φ) = #(φ(D) ∩ Vz).

Note that there is an R-action on M(φ) consisting on the complex isomorphism that fix ±i. If µ(φ) = 1,
then

M̂(φ) = M(φ)/R(5.1)

is going to be 0 dimensional.

Definition 5.7. Let ∂ : ĈF (H) → ĈF (H) be the map defined by

x 7→
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)

µφ=1
nz(φ)=0

#M̂(φ)y(5.2)

The reason we defined such a ∂ is because of the following result of [5]:

Theorem 5.8. (ĈF (H), ∂) is a chain complex.

This is our desired chain complex.

6. Heegaard Floer Homology

Finally, we are ready to define the Heegaard Floer homology for a 3-manifold Y .
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Definition 6.1. The Floer homology groups ĤF (Y ) are the homology groups of the chain complex
(ĈF (H), ∂). That is,

ĤF (Y ) := H∗(ĈF (H))(6.1)

As an example, let us compute ĤF (S3) in two different ways using the Heegaard splitting S3 = H1×H1.
Let F = Z/2Z.

Example 6.2. First, let us compute ĤF (S3) using the following Heegaard diagram.

Here, Tα ∩ Tβ consist of a single element, so ĈF (H) ∼= F and ∂ = 0. Hence, ĤF (S3) ∼= F.

Example 6.3. Now, let us use the following Heegaard diagram.

This example is a bit more interesting. Here, Tα ∩Tβ = {a, b, c}, so ĈF (H) ∼= F3. Now, let us compute
∂a, ∂b, and ∂c. By looking at the Whitney disks, note that ∂a = b. However, the Whitney disk involving
b and c contains the basepoint z, so we get ∂b = ∂c = 0. Hence,

ĤF (S3) ∼= ⟨b, c⟩/⟨c⟩ ∼= F(6.2)

which agrees with what we got before.

References

[1] P. Ozsváth and Z. Szabó. An introduction to Heegaard Floer homology.
[2] N. Saveliev. Lectures on the topology of 3-manifolds: an introduction to the Casson invariant.
[3] J. Greene. Heegaard Floer homology.
[4] B. Liu. Heegaard Floer homology of L−space links with two components.
[5] P. Ozsváth and Z. Szabó. Holomorphic disks and topological invariants for closed three-manifolds.
[6] J. Hom. Heegaard Floer homology, Lectures 1-4.

Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139


	1. Introduction
	2. Heegaard Splittings
	3. Heegaard Diagrams
	4. Symmetric Products
	5. The Floer Chain Complex
	6. Heegaard Floer Homology
	References

